Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis.
نویسندگان
چکیده
Glycosylation is a posttranslational modification utilized in all three domains of life. Compared to eukaryotic and bacterial systems, knowledge of the archaeal processes involved in glycosylation is limited. Recently, Methanococcus voltae flagellin proteins were found to have an N-linked trisaccharide necessary for proper flagellum assembly. Current analysis by mass spectrometry of Methanococcus maripaludis flagellin proteins also indicated the attachment of an N-glycan containing acetylated sugars. To identify genes involved in sugar biosynthesis in M. maripaludis, a putative acetyltransferase was targeted for in-frame deletion. Deletion of this gene (MMP0350) resulted in a flagellin molecular mass shift to a size comparable to that expected for underglycosylated or completely nonglycoslyated flagellins, as determined by immunoblotting. Assembled flagellar filaments were not observed by electron microscopy. Interestingly, the deletion also resulted in defective pilus anchoring. Mutant cells with a deletion of MMP0350 had very few, if any, pili attached to the cell surface compared to a nonflagellated but piliated strain. However, pili were obtained from culture supernatants of this strain, indicating that the defect was not in pilus assembly but in stable attachment to the cell surface. Complementation of MMP0350 on a plasmid restored pilus attachment, but it was unable to restore flagellation, likely because the mutant ceased to make detectable flagellin. These findings represent the first report of a biosynthetic gene involved in flagellin glycosylation in archaea. Also, it is the first gene to be associated with pili, linking flagellum and pilus structure and assembly through posttranslational modifications.
منابع مشابه
Mass spectrometry unmasks mystery Methanococcus pilin.
In this issue, Ng and colleagues describe their outside-in identification of genes involved in the expression of unusual type IV pili in the archaeon Methanococcus maripaludis (13). This intriguing tale, like many in science, hints at chapters not yet written and contains a common theme...expected the unexpected. Prokaryotes, both bacteria and archaea, express a variety of pili, fimbriae, flage...
متن کاملEvidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.
UNLABELLED Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additiona...
متن کاملIdentification of an Additional Minor Pilin Essential for Piliation in the Archaeon Methanococcus maripaludis
Methanococcus maripaludis is an archaeon with two studied surface appendages, archaella and type IV-like pili. Previously, the major structural pilin was identified as MMP1685 and three additional proteins were designated as minor pilins (EpdA, EpdB and EpdC). All of the proteins are likely processed by the pilin-specific prepilin peptidase EppA. Six other genes were identified earlier as likel...
متن کاملIdentification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases.
Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for as...
متن کاملImpact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.
Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 15 شماره
صفحات -
تاریخ انتشار 2008